Chemists and materials scientists study substances at the atomic and molecular levels and analyze the ways in which the substances interact with one another. They use their knowledge to develop new and improved products and to test the quality of manufactured goods.

Duties

Chemists and materials scientists typically do the following:

  • Plan and carry out complex research projects, such as the development of new products and testing methods
  • Instruct scientists and technicians on proper chemical processing and testing procedures, including ingredients, mixing times, and operating temperatures
  • Prepare solutions, compounds, and reagents used in laboratory procedures
  • Analyze substances to determine their composition and concentration of elements
  • Conduct tests on materials and other substances to ensure that safety and quality standards are met
  • Write technical reports that detail methods and findings
  • Present research findings to scientists, engineers, and other colleagues

Some chemists and materials scientists work in basic research. Others work in applied research. In basic research, chemists investigate the properties, composition, and structure of matter. They also experiment with combinations of elements and the ways in which they interact. In applied research, chemists investigate possible new products and ways to improve existing ones. Chemistry research has led to the discovery and development of new and improved drugs, plastics, fertilizers, flavors, batteries, and cleaners, as well as thousands of other products.

Materials scientists study the structures and chemical properties of various materials to develop new products or enhance existing ones. They determine ways to strengthen or combine existing materials, or develop new materials for use in a variety of products. Applications of materials science include inventing or improving ceramics, plastics/polymers, metallic alloys, and superconducting materials.

Chemists and materials scientists use computers and a wide variety of sophisticated laboratory instrumentation for modeling, simulation, and experimental analysis. For example, some chemists use three-dimensional computer modeling software to study the structure and properties of complex molecules.

If a chemist specializes in green chemistry, he or she will design chemical processes and products that are environmentally sustainable. Green chemistry processes minimize the creation of toxins and waste.

Most chemists and materials scientists work as part of a team. The number of scientific research projects that involve multiple disciplines is increasing, and it is common for chemists and materials scientists to work on teams with other scientists, such as biologists, physicists, computer specialists, and engineers. For example, in pharmaceutical research, chemists may work with biologists to develop new drugs and with engineers to design ways to mass-produce the new drugs. For more information, see the profiles on biochemists and biophysicists, microbiologists, zoologists and wildlife biologists, physicists and astronomers, computer and information technology occupations, and engineering occupations.

Because chemists and materials scientists typically work on research teams, they need to be able to work well with others toward a common goal. Many serve in a leadership capacity and need to be able to motivate and direct other team members.

Chemists often specialize in a particular branch of the field. The following are examples of types of chemists:

Analytical chemists determine the structure, composition, and nature of substances by examining and identifying their various elements or compounds. They also study the relationships and interactions among the parts of compounds. Some analytical chemists specialize in developing new methods of analysis and new techniques for carrying out their work. Their research has a wide range of applications, including food safety, pharmaceuticals, and pollution control.

Forensic chemists analyze evidence for clues to help solve crimes. These chemists aid in criminal investigations by testing evidence, such as DNA, and interpreting their findings. Not only is human DNA evidence tested; DNA evidence can be used to exonerate animals suspected of having killed people or other animals. These chemists work primarily in laboratories, though they sometimes testify in court.

Inorganic chemists study the structure, properties, and reactions of molecules that do not contain carbon, such as metals. They work to understand the behavior and the characteristics of inorganic substances. Inorganic chemists figure out how these materials, such as ceramics and superconductors, can be modified, separated, or used in products.

Medicinal chemists research and develop chemical compounds that can be used as pharmaceutical drugs. They work on teams with other scientists and engineers to create and test new drug products. They also help develop new and improved manufacturing processes to effectively produce new drugs on a large scale.

Organic chemists study the structure, properties, and reactions of molecules that contain carbon. They also design and make new organic substances that have unique properties and applications. These compounds, in turn, have been used to develop many commercial products, such as pharmaceutical drugs and plastics.

Physical chemists study the fundamental characteristics of how matter behaves on a molecular and atomic level and how chemical reactions occur. From their analyses, physical chemists may develop new theories, such as how complex structures are formed. Physical chemists often work closely with materials scientists, to research and develop potential uses for new materials.

Theoretical chemists investigate theoretical methods that can predict the outcomes of chemical experiments. Theoretical chemistry encompasses a variety of specializations, although most specializations incorporate advanced computation and programming. Some examples of theoretical chemists are computational chemistsmathematical chemists, and chemical informaticians.

Materials scientists tend to specialize by the material they work with most often. A few examples of materials in which these scientists specialize are ceramics, glasses, metals, nanomaterials (extremely small substances), polymers, and semiconductors.

A growing number of chemists work in interdisciplinary fields, such as biochemistry and geochemistry. For more information, see the profiles on biochemists and biophysicists and geoscientists.

Many people with a chemistry background become postsecondary teachers or high school teachers.

Work Environment

Chemists held about 83,600 jobs in 2021. The largest employers of chemists were as follows:

Chemical manufacturing 33%
Research and development in the physical, engineering, and life sciences 17
Testing laboratories 9
Federal government, excluding postal service 7
Administrative and support and waste management and remediation services      4

Materials scientists held about 7,000 jobs in 2021. The largest employers of materials scientists were as follows:

Research and development in the physical, engineering, and life sciences      28%
Architectural, engineering, and related services 16
Chemical manufacturing 8
Computer and electronic product manufacturing 8
Management of companies and enterprises 5

Chemists and materials scientists typically work in laboratories and offices, where they conduct experiments and analyze their results. In addition to working in laboratories, materials scientists work with engineers and processing specialists in industrial manufacturing facilities. Some chemists also work in these facilities and usually are responsible for monitoring the environmental conditions at the plant.

Chemists and materials scientists who work for manufacturing companies may have to travel occasionally, especially if their company has multiple facilities. Others may work outdoors to collect samples and conduct onsite analysis of air, soil, or water.

Injuries and Illnesses

Chemists and materials scientists may be exposed to health or safety hazards when handling certain chemicals, but there is little risk if they follow proper procedures, such as wearing protective clothing when handling hazardous chemicals.

Work Schedules

Chemists and materials scientists typically work full time and keep regular hours. Occasionally, they may have to work additional hours to meet project deadlines or perform time-sensitive laboratory experiments during off-hours.

Education and Training

Chemists and materials scientists need at least a bachelor’s degree in chemistry or a related field. However, a master’s degree or Ph.D. is required for many research jobs.

Education

Chemists and material scientists typically need a bachelor's degree in chemistry or a related physical science field. Research jobs require a master’s degree or a Ph.D. and also may require significant levels of work experience. Chemists and materials scientists with a Ph.D. and postdoctoral experience typically lead basic- or applied-research teams. Combined programs, which offer an accelerated bachelor’s and master’s degree in chemistry, also are available.

Many colleges and universities offer degree programs in chemistry that are approved by the American Chemical Society. Some colleges offer materials science as a specialization within their chemistry programs, and some engineering schools offer degrees in the joint field of materials science and engineering. High school students can prepare for college coursework by taking chemistry, math, and computer science classes.

Undergraduate chemistry majors typically are required to take courses in analytical, organic, inorganic, and physical chemistry. In addition, they take classes in math, biological sciences, and physics. Computer science courses are essential because chemists and materials scientists need computer skills to perform modeling and simulation tasks, manage and manipulate databases, and operate computerized laboratory equipment.

Laboratory experience through internships, fellowships, or work–study programs in industry is also useful. Some universities offer cooperative programs in which students gain work experience while pursuing a degree.

Graduate students studying chemistry commonly specialize in a subfield, such as analytical chemistry or inorganic chemistry. For example, those interested in doing research in the pharmaceutical industry usually develop a strong background in medicinal or organic chemistry.

Advancement

Chemists typically receive greater responsibility and independence in their work as they gain experience. Greater responsibility also is gained through further education. Ph.D. chemists usually lead research teams and have control over the direction and content of projects, but even Ph.D. holders have room to advance as they gain experience. As chemists become more proficient in managing research projects, they may take on larger, more complicated, and more expensive projects.

Some chemists and materials scientists become natural sciences managers.

Personality and Interests

Chemists and materials scientists typically have an interest in the Building, Thinking and Organizing interest areas, according to the Holland Code framework. The Building interest area indicates a focus on working with tools and machines, and making or fixing practical things. The Thinking interest area indicates a focus on researching, investigating, and increasing the understanding of natural laws. The Organizing interest area indicates a focus on working with information and processes to keep things arranged in orderly systems.

If you are not sure whether you have a Building or Thinking or Organizing interest which might fit with a career as a chemist and materials scientist, you can take a career test to measure your interests.

Chemists and materials scientists should also possess the following specific qualities:

Analytical skills. Chemists and materials scientists carry out scientific experiments and studies. They must be precise and accurate in their analyses, because errors could invalidate their research.

Communication skills. Chemists and materials scientists need to communicate with team members and other scientists. They must be able to read and write technical reports and give presentations.

Critical-thinking skills. Chemists and materials scientists carefully evaluate their own work and the work of others. They must determine if results and conclusions are based on sound science.

Mathematical skills. Chemists and materials scientists regularly use complex mathematical equations and formulas, and they need a broad understanding of mathematics, including calculus, algebra, and statistics.

Organizational skills. Chemists and materials scientists need to carefully document processes to conform to regulations and industry procedures. Disorganization in the workplace can lead to legal problems, damage to equipment, and chemical spills.

Problem-solving skills. Chemists and materials scientists research and develop new and improved chemical products, processes, and materials. This work requires a great deal of trial and error on the part of chemists and materials scientists before a unique solution is found.

Pay

The median annual wage for chemists was $79,430 in May 2021. The median wage is the wage at which half the workers in an occupation earned more than that amount and half earned less. The lowest 10 percent earned less than $48,100, and the highest 10 percent earned more than $134,780.

The median annual wage for materials scientists was $100,090 in May 2021. The lowest 10 percent earned less than $56,380, and the highest 10 percent earned more than $162,950.

In May 2021, the median annual wages for chemists in the top industries in which they worked were as follows:

Federal government, excluding postal service $117,850
Research and development in the physical, engineering, and life sciences 101,180
Chemical manufacturing 77,740
Testing laboratories 61,190
Administrative and support and waste management and remediation services      54,160

In May 2021, the median annual wages for materials scientists in the top industries in which they worked were as follows:

Computer and electronic product manufacturing $130,050
Management of companies and enterprises 106,250
Research and development in the physical, engineering, and life sciences      101,990
Chemical manufacturing 101,400
Architectural, engineering, and related services 82,680

Chemists and materials scientists typically work full time and keep regular hours.

Job Outlook

Overall employment of chemists and materials scientists is projected to grow 6 percent from 2021 to 2031, about as fast as the average for all occupations.

About 8,200 openings for chemists and materials scientists are projected each year, on average, over the decade. Many of those openings are expected to result from the need to replace workers who transfer to different occupations or exit the labor force, such as to retire. 

Employment

In pharmaceutical and medicine manufacturing, chemists will be needed to develop nanotechnology for medicinal uses. And in chemical manufacturing, these workers will be needed for improving environmental safety in the workplace and community.

Materials scientists will be needed to develop cheaper, safer, and better quality materials for a variety of uses, such as in electronics, energy, and transportation.

For More Information

For information on career opportunities, earnings, and education for chemists and materials scientists, visit

American Chemical Society

American Chemistry Council

ASM International

Materials Research Society

National Resource Center for Materials Technology Education

For more information about certified degree programs in chemistry, visit

American Chemical Society Committee on Professional Training

For information about academic programs in green chemistry, visit

American Chemical Society Green Chemistry Academic Programs

To find job openings for chemists and scientists in the federal government, visit

USAJOBS

 

 

FAQ

Where does this information come from?

The career information above is taken from the Bureau of Labor Statistics Occupational Outlook Handbook. This excellent resource for occupational data is published by the U.S. Department of Labor every two years. Truity periodically updates our site with information from the BLS database.

I would like to cite this page for a report. Who is the author?

There is no published author for this page. Please use citation guidelines for webpages without an author available. 

I think I have found an error or inaccurate information on this page. Who should I contact?

This information is taken directly from the Occupational Outlook Handbook published by the US Bureau of Labor Statistics. Truity does not editorialize the information, including changing information that our readers believe is inaccurate, because we consider the BLS to be the authority on occupational information. However, if you would like to correct a typo or other technical error, you can reach us at help@truity.com.

I am not sure if this career is right for me. How can I decide?

There are many excellent tools available that will allow you to measure your interests, profile your personality, and match these traits with appropriate careers. On this site, you can take the Career Personality Profiler assessment, the Holland Code assessment, or the Photo Career Quiz.

Get Our Newsletter